Finite-size scaling in two-dimensional Ising spin-glass models
نویسندگان
چکیده
منابع مشابه
Finite-size scaling in two-dimensional Ising spin-glass models.
We study the finite-size behavior of two-dimensional spin-glass models. We consider the ±J model for two different values of the probability of the antiferromagnetic bonds and the model with Gaussian distributed couplings. The analysis of renormalization-group invariant quantities, the overlap susceptibility, and the two-point correlation function confirms that they belong to the same universal...
متن کاملFinite Size Scaling Analysis of Exact Ground States for ±J Spin Glass Models in Two Dimensions
— With the help of exact ground states obtained by a polynomial algorithm we compute the domain wall energy ∆ at zero-temperature for the bond-random and the site-random Ising spin glass model in two dimensions. We find that in both models the stability of the ferromagnetic and the spin glass order ceases to exist at a unique concentration pc for the ferromagnetic bonds. In the vicinity of this...
متن کاملMean Field Dynamical Exponents in Finite - Dimensional Ising Spin Glass
We report the value of the dynamical critical exponent z for the six dimensional Ising spin glass, measured in three different ways: from the behavior of the energy and the susceptibility with the Monte Carlo time and by studying the overlap-overlap correlation function as a function of the space and time. All three results are in a very good agreement with the Mean Field prediction z = 4. Fina...
متن کاملFinite-Size Scaling in Two-dimensional Continuum Percolation Models
We test the universal finite-size scaling of the cluster mass order parameter in two-dimensional (2D) isotropic and directed continuum percolation models below the percolation threshold by computer simulations. We found that the simulation data in the 2D continuum models obey the same scaling expression of massM to sample size L as generally accepted for isotropic lattice problems, but with a p...
متن کاملCluster analysis and finite-size scaling for Ising spin systems.
Based on the connection between the Ising model and a correlated percolation model, we calculate the distribution function for the fraction (c) of lattice sites in percolating clusters in subgraphs with n percolating clusters, f(n)(c), and the distribution function for magnetization (m) in subgraphs with n percolating clusters, p(n)(m). We find that f(n)(c) and p(n)(m) have very good finite-siz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2011
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.84.051116